分词及词性标注总结

近期,尝试了各类的分词及词性标注工具,包括如下软件:

工具 中英文支持 其他说明
中科院的ICTCLAS 中英 CPP,多语言接口
清华大学的THULANC 中,英较差 多语言支持
哈工大的LTP CPP,多语言接口
复旦的FudanDNN Java
东北大学的NiuParser 中,英较差 CPP
斯坦福的Stanford 中英 Java
Ansj Java
Jieba Python
Word Java
HanLP Java
LingPipe 英,中较差 Java
OpenNLP Java
NLTK Python
Gate Java,GUI,但不太符合程序员思维逻辑
lucene-analyzers-smartcn Java,只分词,不标词性

此外,还有几个工具,由于时间关系,没有进行测试,有兴趣的话可以看一下:
mmseg4j
paoding
jcseg
IK-Analyzer

总结如下:
1、无论是英文还是中文,其分词及标注词性的技术已经相对比较成熟;
2、英文和中文完全是两个体系,中文还是国内做的好一些
3、算法是公开的,因此很多时候,模型库比算法要一些
4、模型库够用就好,不是越大越好。尤其是特定语境下的模型库,自己训练的会更好用
5、英文的模型库比国内好太多了,看着好羡慕啊
6、希望国内的科研可以更有套路、更有组织、更专业化一些

Comments are closed.